Treatment of AVN using the induction chamber technique and a biological-based approach: Indications and clinical results

G.M. Calori a,*, E. Mazza a, M. Colombo a, S. Mazzola a, G.V. Mineo b, P.V. Giannoudis c

a Orthopaedic Reparative Surgery Department, Orthopaedic Institute Gaetano Pini, University of Milan, Italy
b University Department of Orthopaedics, Orthopaedic Institute Gaetano Pini, University of Milan, Italy
c Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK

A R T I C L E I N F O

Article history:
Accepted 17 September 2013

Keywords:
Avascular necrosis
AVN
Mesenchymal stem cells
Core decompression
rHBMPC
Osteonecrosis
Femoral head
Early stage
Autologous implantation
Biological chamber

A B S T R A C T

Objective: To determine the efficacy of core decompression (CD) technique combined with recombinant morphogenetic proteins, autologous mesenchymal stem cells (MSCs) and xenograft bone substitute into the necrotic lesion of the femoral head on clinical symptoms and on the progression of osteonecrosis of the femoral head.

Patients and methods: A total of 38 patients (40 hips) with early stage osteonecrosis of the femoral head were studied over a 4-year period.

Results: CD technique combined with recombinant morphogenetic proteins, autologous MSCs and xenograft bone substitute was associated with a significant reduction in both pain and joint symptoms and reduced the incidence of fractal stages. At 36 months, 33 patients achieved clinical and radiographic healing.

Conclusion: This long-term follow-up study confirmed that CD technique combined with recombinant morphogenetic proteins, autologous MSCs and xenograft bone substitute may be an effective treatment for patients with early stage osteonecrosis of the femoral head.

© 2013 Elsevier Ltd. All rights reserved.

Introduction

Avascular necrosis (AVN) of the femoral head is a common cause of hip disability that may progress to collapse of the femoral head and hip osteoarthritis in up to 80% of patients if left untreated [1]. Osteonecrosis is the biological death of bone, either partially or completely. It has a variety of potential causes, idiopathic, infective, traumatic, toxic or ischaemic.

Osteonecrosis of the femoral head typically affects patients in their third to fifth decades of life [2]. In the USA in the future, 10,000–20,000 patients are expected to develop femoral head osteonecrosis every year, with 70% of them being males aged 30–40 years old. Over 50% of these patients will develop the disease in both hips within two years [3].

Several risk factors have been reported to be associated with the development of AVN, including alcohol abuse, excessive use of corticosteroids, haemoglobinopathy, Gaucher’s disease, pregnancy, coagulopathies, Caisson disease, organ transplantation, hyperbaric exposure, inflammatory or autoimmune disease, antiretroviral therapy, smoking [4,5], cancer chemotherapy [6,7] trauma and other idiopathic mechanisms [8–10]. Despite the plethora of causative factors, the pathophysiology of AVN remains uncertain [11–13].

The factors that influence the progression of AVN from the appearance of the necrotic lesion to subchondral fracture and femoral head collapse are not yet fully understood, but size and stage of osteonecrosis have been shown to be predictive of the clinical outcome [14].

The pathogenesis of osteonecrosis is still unclear, but it can be seen as a vascular and bone disease. On one hand, the function of the capillaries that serve as a conduit for the stem cells and bone cells needed in the bone remodelling unit and providing blood supply could be altered by emboli or thrombosis [15,16]. On the other hand, autologous mesenchymal stem cells (MSCs) and osteoblasts that could potentially induce bone formation have been shown to be decreased in number and activity [17,18]. Moreover, osteocytes and bone-lining cells in the necrotic lesion and the proximal femur undergo apoptosis [19,20]. This altered bone remodelling may be associated with three different events in the pathogenesis of osteonecrosis: the appearance of osteonecrosis itself, the insufficient bone repair that occurs after osteonecrosis, and its evolution to the subchondral fracture.
The gold standard therapy for early stage osteonecrosis of the femoral head (stage I of the Ficat [21] classification) is a conservative treatment comprising a symptomatic therapy, electrostimulation or extracorporeal shockwave therapy (ESWT). For later stages of osteonecrosis (stages II–III of the Ficat [21] classification), therapy comprises surgical treatment, such as vascularised fibula grafting, core decompression (CD) technique or total hip arthroplasty (THA); surface replacement arthroplasty offers a minimally destructive procedure. When the joint is irreversibly compromised (stage V), the most effective treatment solution is total hip replacement [22–24].

CD is a widely accepted procedure for treatment of hip osteonecrosis in its early stages (before mechanical failure has occurred) [25–29]. The outcome of CD is not always satisfactory: the reconstruction of the necrotic area by this method may remain incomplete because of inadequate creeping substitution and bone remodelling [30]. This is attributed to the relative insufficiency of osteoprogenitor cells in the proximal femur of the osteonecrotic hip [31,32]. Recent pioneer studies by Hernigou et al. and Gangji et al. have shown the efficacy of implantation of autologous MSCs into the CD tract during early-stage AVN [33–36]. There is evidence to indicate that implanted MSCs promote both osteogenesis and angiogenesis in the femoral head [34,37]. These beneficial effects may be mediated, at least in part, by MSCs and endothelial precursor cells [37].

The efficacy of growth factors, particularly recombinant human bone morphogenetic protein (rhBMP)-7, in orthopaedic surgery has been shown in several clinical studies, including in the treatment of non-union and bone defects [38–40,51–53]. The purpose of the current study is to evaluate the results of treatment using a new biological-based approach. The aim of this retrospective clinical study is to examine the effectiveness of CD and implantation of MSCs and growth factors (rhBMP-7) with flexible xenograft bone substitute [41] for the treatment of early-stage AVN to create a biological chamber [42] based on the principles of the polytherapy [43–45].

Patients and methods

Study design

This retrospective clinical study of prospectively documented data was conducted in the Orthopaedic Institute G. Pini (Milan) on patients treated between March 2007 and June 2011. The objective of this study was to assess the efficacy of the diamond-based approach to bone regeneration following CD combined with implantation of MSCs and growth factors (rhBMP-7) with a xenograft (equine origin) bone substitute partially demineralised (flexible) for the treatment of early-stage AVN.

AVN was classified according to the Ficat [21] classification: stage 0: asymptomatic, normal MRI and radiograph; stage 1: normal or minor changes on plain radiograph and MRI, sometimes groin pain; stage 2: sclerosis, or cysts of femoral head with diffuse porosis, geographic defects on MRI; stage 3: pain and stiffness with radiation to knee and limb, radiographs and MRI show broken contour of the head; stage 4: collapse, flattened contour, decreased joint space and osteoarthrosis (Fig. 1 and Table 1).

Participants

Inclusion criteria were age greater than 18 years, clinical signs of hip pain and radiological features on the MRI scan of stages I–III osteonecrosis (Ficat [21] classification).

Exclusion criteria were pregnancy, active infection, skeletal immaturity, stage IV osteonecrosis, immunosuppressive drug therapy, history of inflammatory arthritis, hypersensitivity to rhBMP-7, contraindication to bone marrow harvest, severe osteoporosis, neuromuscular deficits or physical condition that may interfere with the ability to limit the load, autoimmune disease, cancer near to the site of surgery, previous treatment with rhBMP and mental health problems.

Procedure

Patients received antibiotic prophylaxis with 2 g cephalosporin when they arrived in the surgical room (i.e. before surgery), then 1 g cephalosporin at both 8 h and 16 h after surgery.

The first step of the procedure was bone-marrow blood aspiration. The patient was placed on the operating table in a supine position with arms stretched out to the sides. The needle for bone-marrow blood aspiration was introduced at the level of the anterior iliac crest and the bone marrow blood was aspirated. The second step of the procedure was CD. A c-arm fluoroscope was draped with a sterile sleeve and positioned over the hip region to enable an anteroposterior view. Under fluoroscopic control, a Kirschner wire was inserted in the direction of the osteonecrotic lesion; the access of the wire was controlled with the two standard fluoroscopic projection. When the Kirschner wire was positioned at the lesion site, a 2 cm incision was made laterally through the skin and the fascia at the level of, or just distal to, the greater trochanteric. With the help of the Kirschner wire and a soft tissue protector, an 8-mm reamer was then inserted under fluoroscopic control through the trochanter, the femoral neck, and the femoral head in the direction of the osteonecrotic lesion. This procedure was then repeated with a specially shaped 12-mm reamer for retrograde removal of the osteonecrotic lesion. The reamer was directed towards the necrotic zone until it reached the pathologic area without reaching the joint. Concentration of the bone marrow sample was achieved by washing using physiological water to remove bone spicules, fat and cellular debris.

Growth factors (rhBMP-7), a scaffold of xenograft (equine origin) bone substitute and autologous bone MSCs was inserted inside the tunnel of the femur using special instrumentation; the bone substitute was inserted at the end to close all the components of the polytherapy [43–45] in the biological chamber [42]. The patient was usually discharged two days after surgery and was advised 20 days with no weight-bearing using two crutches, then 10 days with partial-weight bearing before returning to normal deambulation.

Outcome assessments

Patients underwent clinical and radiological evaluation (X-ray, MRI, and CT scan) before surgery; then were classified using Ficat [21] classification. Follow-up was scheduled at 1, 3, 6, 9, 12, 24 and 36 months after the intervention. The primary outcome was clinical and comprised evaluation with the Harris hip score (HHS), which measures the pain, function, activity and motion of the hip. The secondary outcome was the radiological evaluation of the collapse of the femoral head. The tertiary outcome was the MRI-CT evaluation of the progression in osteonecrotic stages. The last outcome was the evaluation of the number of patients who went on to have a total hip replacement. Peri- and post-operative complications were recorded and classified as severe, moderate or mild. All adverse events were classified as serious or non-serious.

Results

A total of 47 patients were enrolled in the current study between March 2007 and June 2011. Nine patients were lost to follow up, therefore 38 patients (40 hips) were available for the final follow up. Patients comprised 25 males and 13 females with a
mean age of 46.34 ± 10.22 years (minimum age 21 and maximum age 73); pathogenesis of the osteonecrosis included post-traumatic in four patients, long-term cortisone therapy in seven patients and idiopathic in 27 patients. According to the Ficat [21] classification criteria, there were seven hips with stage I osteonecrosis, 25 hips with stage II and eight hips with stage III.

Clinical and radiographic healing occurred in 33 of 38 patients (86.84%); the mean time to clinical success was 1.8 ± 0.99 months. The radiological success was 86.84% at 36 months. The HHS was evaluated preoperatively and at 1, 12 and 36 months after surgery: the score was 78.5 ± 5.5 pts preoperatively, 82.97 ± 5.1 pts at 1 month and 81.39 ± 7.9 pts at 36 months after the operation. In all the five failed treatments there was a collapse of the femoral head with progression of the osteonecrotic lesion at the 24 months’ follow up. THA was performed in these patients. Notably, the failed treatment could be associated with the complexity of the clinical situation of the hips of these patients, previously classified as stage III according to Ficat [21] classification. The only complications were four cases of calcification in the soft tissue near the surgery access and one subtrochanteric fracture of the femur 1 week after CD; in the latter case we proceeded with the reduction and synthesis with a nail and at the last follow-up at 36 months treatment success was noted.

Discussion

The phenomenon of AVN was first described by Alexander Munro in 1738. At the end of 1800, the French anatomist Jean Baptiste Léon Cruveilhier proposed that bloodstream impairment of the femoral head was a possible cause. Much attention has been given by the scientific community to the early diagnosis of AVN

Table 1

The main studies about core decompression and biotechnologies implantation in the treatment of AVN of the femoral head and related results.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Treatment</th>
<th>Patients</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hernigou P. and Beaujean F.</td>
<td>CD + autologous bone grafting</td>
<td>116 Patients (189 hips)</td>
<td>Clinical success in 155/189 hips</td>
</tr>
<tr>
<td>Lieberman J.R. et al. (2004)</td>
<td>CD + allogenic, antigen-extracted, autolysed fibula allograft + 50mg partially purified human bone morphogenetic protein and non-collagenous proteins</td>
<td>15 Patients (17 hips)</td>
<td>Clinical success in 14/17 hips</td>
</tr>
<tr>
<td>Gangji V. et al. (2011)</td>
<td>11 hips: CD</td>
<td>19 Patients (24 hips)</td>
<td>Clinical success in 3/11 patients in CD group and in 10/13 patients in CD + implantation of bone marrow group HHP score significantly increased in BMFC group; VAS score significantly decreased in BMCC group. Radiological and clinical success rates significantly higher in BMFC group (82.5 vs 40.7 and 75.4 vs 37.0).</td>
</tr>
<tr>
<td>Yaosheng L. et al. (2012)</td>
<td>17 hips: CD</td>
<td>34 Patients (34 hips)</td>
<td></td>
</tr>
<tr>
<td>Zhao D. et al. (2012)</td>
<td>47 hips: CD (7 hips lost follow-up)</td>
<td>100 Patients (100 hips)</td>
<td>Clinical success in 51/53 patients in CD + implantation of bone marrow mesenchymal stem cells and in 30/40 patients in CD group</td>
</tr>
<tr>
<td>Calori G.M. et al. (2013)</td>
<td>CD + recombinant morphogenetic proteins + autologous MSCs + xenograft bone substitute</td>
<td>34 Patients (40 hips)</td>
<td>Clinical success in 33/34 patients</td>
</tr>
</tbody>
</table>
and to optimisation of treatment modalities to avoid the final treatment option, which is total hip replacement.

The CD technique was first proposed by Arlet and Picat in 1967, initially as a diagnostic procedure. This method is associated with a reduction in both symptomatology and disease progression. Possible mechanisms for the effectiveness of this therapy include a reduction in pressure inside the femoral head and an increase of blood flow. In Mont et al.’s [23] preclinical study, defects that were treated with bone graft and rhBMP-7 showed moderate to excellent healing radiographically and biomechanically; defects that were left untreated did not heal. Hernigou and Beaujean [34] reviewed 189 hips treated with autologous bone grafting and CD after an average follow-up period of 7 years; total hip replacement was performed in 34 hips (18%). The authors observed that the best results were achieved in hips that received increased numbers of osteoprogenitor cells.

Lieberman et al. [46] published the results of a retrospective evaluation of 15 patients (17 hips) with a diagnosis of symptomatic osteonecrosis of the hip treated with CD combined with an allogeneic, antigen-extracted, autologous fibula allograft and 50 mg of partially purified hBMP and non-collagenous proteins. The average duration of clinical follow-up was 53 months (range 26–94 months). All the hips were evaluated and classified: 16 hips were classified according to the classification of Picat as stage II and one hip as stage III. An involvement of 50% or less of the femoral head was observed in 14 hips. Clinical success was described in 14 out of 15 hips (93%, 13 patients) with stage II disease. In three out of 17 hips (three patients), there was a progression of necrosis evaluated radiographically (Picat stages II and III) and these patients required total hip replacement surgery.

A particular treatment was ideated by Calori et al. [47] in which CD technique was used with growth factors and a scaffold, a Tantalum screw with osteoconductive properties. A total of 18 patients (19 hips) received this treatment. Healing, pain remission and interruption of osteonecrosis progression occurred in 15 patients.

Along with BMPs, surgeons have considered combining CD with autogenous MSCs, which represent osteoprogenitor cells with the power to enhance bone repair. Gangi et al. [48] conducted a study on 24 hips with early stage osteonecrosis of the femoral head; the hips were allocated to either CD only (11 patients) or CD and implantation of bone marrow (13 patients). At 60 months, eight out of 11 hips in the control group had deteriorated to the fractural stage whereas only three of 13 hips in the bone marrow graft group had progressed to that stage. The results show that bone marrow implantation was associated with a significant reduction in both pain and joint symptoms and reduced the incidence of fractural stages.

A study by Liu et al. [49] reported success with CD and implantation of bone marrow mononuclear cells with porous hydroxyapatite composite filler in 17 patients compared with an equivalent group treated only with CD.

Similar results were reported by Zhao et al. [50]. They recruited and randomised 100 patients with early stage AVN into two treatment groups: one group received CD with implantation of bone marrow MSCs and the other only CD. Sixty months after the operation, only two of the 53 hips treated with CD and bone marrow MSCs progressed and underwent vascularised bone grafting. In the CD group, seven hips were lost to follow-up, and 10 of the remaining 44 hips progressed and underwent vascularised bone grafting or total hip replacement. The author reported that implantation of MSCs alongside CD significantly improved the HHS as well as decreased the volume of femoral head of the hips preoperatively classified at stage IC, IIB and IIIC (Steinberg classifications) compared with the CD group.

There are no reports of controlled clinical trials that evaluate the synergistic action between MSCs and rhBMP-7. There are two preclinical studies in vitro and in vivo that show the efficacy of this combination on animals. In humans there are only case reports.

We progressed to the next level of biological enhancement, based on the diamond concept of tissue engineering, to promote bone regeneration in an efficient manner and to minimise the risk of secondary collapse. Although the incidence of AVN is not high, it is associated with high morbidity. It often affects young patients, thereby leading to high social costs in terms of health and welfare. Total hip replacement, for example, is associated with significant long-term costs because of post-operative rehabilitation involving abstention from work for a few months and the need for revision surgery. The current clinical study is limited by the number of enrolled patients who reached the end of follow-up (36 months).

Conclusions

We have shown that the CD technique with autologous bone marrow cells, growth factors (BMP-7) and flexible xenograft (equine origin) bone substitute implantation reduces the incidence of fractural stage non-traumatic osteonecrosis of the femoral head; delays the progression of stages I–II osteonecrosis, and decreases hip pain and joint symptoms. In selected cases, particularly in young patients, stage III lesions (Picat classification) could be treated with our technique to avoid or delay a total hip replacement. To our knowledge, this is the first clinical study that associates autologous bone marrow cells, growth factors (BMP-7) and porous hydroxyapatite composite bone filler for the treatment of early osteonecrosis of the femoral head. Preliminary data indicate a therapeutic potential of BMPs in AVN.

Conflicts of interest

The authors have no conflicts of interest to declare. No financial support has been received by the authors for the preparation of this manuscript.

References
